
Wasabi Finance
Security Assessment
Mar 19th 2021

Summary

Overview
Project Summary
Engagement Summary
Finding Summary

Findings
CTK-WASABI-1 | Proper Usage of public and external
CTK-WASABI-2 | Checks Effects Interaction Pattern Not Used
CTK-WASABI-3 | Checks Effects Interaction Pattern Not Used
CTK-WASABI-4 | Missing Zero Address Validation
CTK-WASABI-5 | Function Return Value Ignored
CTK-WASABI-6 | Missing Emit Events
CTK-WASABI-7 | Privileged Ownerships on MasterChef
CTK-WASABI-8 | Privileged Ownerships on WasabiToken
CTK-WASABI-9 | Multiplication on the result of a division
CTK-WASABI-10 | add() Function Not Restricted
CTK-WASABI-11 | Gas Optimization

Appendix | Finding Categories

Disclaimer

About CertiK

1

Summary
This report has been prepared for Wasabi Finance smart contracts, MasterChef,
WasabiToken, ContributorsVault, TeamsVault and libs to discover issues and vulnerabilities
in the source code as well as any dependencies that were not part of an officially
recognized library. A comprehensive examination has been performed, utilizing static
analysis and manual review techniques.

The auditing process pays special attention to the following considerations:
● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and

industry standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart

contracts produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by security experts.

The security assessment resulted in 10 findings that ranged from Major to informational.
We recommend addressing these findings to ensure a high level of security standards and
industry practices.

We suggest below recommendations that could better serve the project from the security
perspective:

1. Enhance general coding practices for better structures of source codes;
2. Add enough unit tests to cover the possible use cases given they are currently

missing in the repository;
3. Provide more comments per each function for readability, especially contracts are

verified in public;
4. Provide more transparency on privileged activities once the protocol is live.

2

Overview

Project Summary

Name Wasabi Finance

Codebase https://github.com/wasabi-swap-team/wasabi-swap-farm/tre
e/main/contracts

Commit Hash e5e96bff14d619f7bf3855872c542c35257338b3

Engagement Summary

Delivery Date Mar 19th, 2021

Methodology Static analysis and manual review

Contracts in Scope 5

Contract - Token WasabiToken

Contract - MasterChef MasterChef

Contract -
ContributorsVault

ContributorsVault

Contract - TeamsVault TeamsVault

Contract - StakedWasabi StakedWasabi

Finding Summary

Total 11

Major 2

3

https://github.com/wasabi-swap-team/wasabi-swap-farm/tree/main/contracts
https://github.com/wasabi-swap-team/wasabi-swap-farm/tree/main/contracts

Medium 0

Minor 4

Informational 5

4

Findings

ID Title Severity Response

CTK-WASABI-1 Proper Usage of public and external Informational Pending

CTK-WASABI-2 Checks Effects Interaction Pattern Not
Used

Minor Pending

CTK-WASABI-3 Checks Effects Interaction Pattern Not
Used

Major Pending

CTK-WASABI-4 Missing zero address validation Minor Pending

CTK-WASABI-5 Function Return Value Ignored Informational Pending

CTK-WASABI-6 Missing Emit Events Informational Pending

CTK-WASABI-7 Privileged Ownerships on MasterChef Informational Pending

CTK-WASABI-8 Privileged Ownerships on WasabiToken Informational Pending

CTK-WASABI-9 Multiplication on the result of a division Informational Pending

CTK-WASABI-10 add() Function Not Restricted Major Pending

CTK-WASABI-11 Gas Optimization Informational Pending

5

CTK-WASABI-1 | Proper Usage of public and external

Type Severity Location

Gas Optimization Informational MasterChef

Description
public functions that are never called by the contract could be declared external. When
the inputs are arrays external functions are more efficient than public functions.

MasterChef:
updateWasabiPerBlock(), updateRewardPercentage(), setBootstrappingValid(),

migrate()

Recommendation
Consider using the external attribute for functions never called from the contract.

6

CTK-WASABI-2 | Checks Effects Interaction Pattern Not Used

Type Severity Location

Logic issue Minor SmartChef.sol: L275, L318

Description
In function deposit() and enterStaking(), lpToken is pointing to a smart contract that is
implemented based on an ERC20 interface. This smart contract can only be passed into the
function add() by owner as one of the parameters while the implementation of lptoken is
unknown statically, even if it strictly followed the ERC20 interface.

Due to the unknown implementation of contract lptoken, the implementation of function
safeTransferFrom()in L289 is also unknown and may have a malicious logical
implementation that calls back to the function deposit(), which can lead to another
invocation of deposit() without updating user.rewardDebt in L283. This will incorrectly
refund pending rewards multiple times to the user.

Recommendation
We advise developers to update the value of user.rewardDebt before
pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); to follow the
Checks-Effects-Interactions Pattern.

function deposit(uint256 _pid, uint256 _amount) public {

...

if (user.amount > 0) {

uint256 pending = user.amount.mul(pool.accWasabiPerShare).div(1e12)

.sub(user.rewardDebt);

user.rewardDebt = user.amount.mul(pool.accWasabiPerShare).div(1e12);//update

if(pending > 0) {

safeWasabiTransfer(msg.sender, pending);

}

}

if (_amount > 0) {

pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);

user.amount = user.amount.add(_amount);

}

user.rewardDebt = user.amount.mul(pool.accWasabiPerShare).div(1e12);

}

7

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern

CTK-WASABI-3 | Checks Effects Interaction Pattern Not Used

Type Severity Location

Logic issue Major SmartChef.sol: L359

Description
In function emergencyWithdraw(), pool.lpToken is pointing to a smart contract that is
implemented based on an ERC20 interface. This smart contract can only be passed into the
function add() by owner as one of the parameters while the implementation of lptoken is
unknown statically, even if it strictly followed the ERC20 interface.

Due to the unknown implementation of contract lptoken, the implementation of function
safeTransfer()in L362 is also unknown and may have a malicious logical implementation
that calls back to the function emergencyWithdraw(), which can lead to another invocation
of emergencyWithdraw() without updating user.amount in L364. This is dangerous to the
user.amount and will incorrectly withdraw multiple times to the msg.sender.

Recommendation
We advise developers to update the value of user.amount before
pool.lpToken.safeTransfer(address(msg.sender), user.amount); to follow the
Checks-Effects-Interactions Pattern.

function emergencyWithdraw(uint256 _pid) public {

PoolInfo storage pool = poolInfo[_pid];

UserInfo storage user = userInfo[_pid][msg.sender];

uint256 withdraw_amount = user.amount;

user.amount = 0;

user.rewardDebt = 0;

pool.lpToken.safeTransfer(address(msg.sender), withdraw_amount);

emit EmergencyWithdraw(msg.sender, _pid, user.amount);

}

8

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern

CTK-WASABI-4 | Missing Zero Address Validation

Type Severity Location

Volatile Code Minor MasterChef: L373, L377

ContributorsVault: L118 L178

Description
The assigned value to vault, dev should be verified as non zero value to prevent being
mistakenly assigned as address(0) in updateDevAddress() function and
updateVaultAddress(). Violation of this may cause losing ownership of vault and dev.

Recommendation
Check that the address is not zero by adding checks in function updateVaultAddress()

and updateDevAddress(). Please ignore if the team inclines to leverage the same function
in a way to renounce the fee collections (mimic the token burn in a way)

9

CTK-WASABI-5 | Function Return Value Ignored

Type Severity Location

Volatile Code Informational StakedWasabi: L40, L42

Description
The return values of wasabi.transfer(_to, wasabiBal),wasabi.transfer(_to,
_amount); are ignored in function safeWasabiTransfer().

Recommendation
We advise developers to handle the return value of wasabi.transfer() to check if the
transfer is executed without any error.

10

CTK-WASABI-6 | Missing Emit Events

Type Severity Location

Volatile Code Informational MasterChef.sol

Description
Functions that affect the status of sensitive variables should be able to emit events as
notifications to customers.

MasterChef:
migrate(),updateRewardPercentage(),updateWasabiPerBlock()

Recommendation
Consider adding events for sensitive actions, and emit them in the function like below.

event Migrate(address indexed user, uint256 indexed _pid);

...

function migrate(uint256 _pid) public{

...

emit Migrate(msg.sender, _pid);

}

11

CTK-WASABI-7 | Privileged Ownerships on MasterChef

Type Severity Location

Business Model Informational MasterChef: L127, L131, L172

Description
The owner of MasterChef has permission to update the parameters on rewards without
obtaining the consensus of the community.

Recommendation
Renounce ownership when it is the right timing, or gradually migrate to a timelock plus
multisig governing procedure and let the community monitor in respect of transparency
considerations.

12

CTK-WASABI-8 | Privileged Ownerships on WasabiToken

Type Severity Location

Business Model Informational WasabiToken, StakedWasabi

Description
WasabiToken and StakedWasabi are standard ERC20 implementations that contain the
mint functionality with ownership controls, which means whoever obtained access to the
owner account would be able to tamper with the integrity of the token economics.

Recommendation
Renounce ownership when it is the right timing, or gradually migrate to a timelock plus
multisig governing procedure and let the community monitor in respect of transparency
considerations. Specifically for this scenario, we assume the owner will be transferred to
the vault (MasterChef) on top of the token. We recommend that the team maintains a high
level of transparency on such a transaction taking place.

13

CTK-WASABI-9 | Multiplication on the result of a division

Type Severity Location

Volatile Code Minor ContributorsVault L214, L241, L253

Description
L213-L214:

uint256 lpWasabiPerBlock = wasabiPerBlock.mul(lpRewardPercentage).div(100);

uint256 wasabiReward = multiplier.mul(lpWasabiPerBlock).mul(allocPoint)

.div(totalAllocPoint);

Solidity integer division might truncate. As a result, performing multiplication before
division can sometimes avoid loss of precision.

Recommendation
Consider ordering multiplication before division.

14

CTK-WASABI-10 | add() Function Not Restricted

Type Severity Location

Volatile Code Major MasterChef: L157

Description
The comment in L157, mentioned // XXX DO NOT add the same LP token more than

once. Rewards will be messed up if you do.

The total amount of reward lpWasabiReward in function updatePool() will be incorrectly
calculated if the same LP token is added into the pool more than once in function add().

However, the code is not reflected in the comment behaviors as there isn't any valid
restriction on preventing this issue.

The current implementation is relying on the trust of the owner to avoid repeatedly adding
the same LP token to the pool, as the function will only be called by the owner.

Recommendation
Using mapping of addresses -> booleans, which can restrict the same address being
added twice.

15

CTK-WASABI-11 | Gas Optimization

Type Severity Location

Business Model Informational ContributorsVault L67-75

Description
Refer to exhibits that do not affect the functionality of the code but generate different,
more optimal EVM opcodes resulting in a reduction in the total gas cost of a transaction.

Recommendation
We recommend using following implementation to save gas:

for (uint256 i = 0; i < beneficiaries_.length; i++) {

require(beneficiaries_[i] != address(0) && amounts_[i] > 0 ,

"Beneficiary address or allocate cannot be zero.")

… …
}

16

Appendix | Finding Categories
Gas Optimization

Refer to exhibits that do not affect the functionality of the code but generate
different, more optimal EVM opcodes resulting in a reduction in the total gas cost of
a transaction.

Mathematical Operations
Refer to exhibits that relate to mishandling of math formulas, such as overflows,
incorrect operations, etc.

Logical Issue
Refer to exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow
Concern the access control imposed on functions, such as owner-only functions
being invoke-able by anyone under certain circumstances.

Volatile Code
Refer to segments of code that behave unexpectedly on certain edge cases that may
result in a vulnerability.

Data Flow
Describe faults in the way data is handled at rest and in memory, such as the result
of a struct assignment operation affecting an in-memory struct rather than an
in-storage one.

Language Specific
Language Specific findings are issues that would only arise within Solidity, i.e.
incorrect usage of private or delete.

Coding Style
Usually do not affect the generated byte-code and comment on how to make the
codebase more legible and as a result easily maintainable.

Inconsistency
Refer to functions that should seemingly behave similarly yet contain different code,
such as a constructor assignment imposing different require statements on the
input variables than a setter function.

Magic Numbers
Refer to numeric literals that are expressed in the codebase in their raw format and
should otherwise be specified as constant contract variables aiding in their
legibility and maintainability.

Compiler Error

17

Refer to an error in the structure of the code that renders it impossible to compile
using the specified version of the project.

Dead Code
Code that otherwise does not affect the functionality of the codebase and can be
safely omitted.

Business Model
Refer to contract or function logics that are debatable or not clearly implemented
according to the design intentions.

18

Disclaimer
This report is subject to the terms and conditions (including without limitation, description
of services, confidentiality, disclaimer and limitation of liability) set forth in the Services
Agreement, or the scope of services, and terms and conditions provided to the Company in
connection with the Agreement. This report provided in connection with the Services set
forth in the Agreement shall be used by the Company only to the extent permitted under
the terms and conditions set forth in the Agreement. This report may not be transmitted,
disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior
written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. This report is not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that
contracts CertiK to perform a security assessment. This report does not provide any
warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business
model or legal compliance.

This report should not be used in any way to make decisions around investment or
involvement with any particular project. This report in no way provides investment advice,
nor should be leveraged as investment advice of any sort. This report represents an
extensive assessing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk.
CertiK’s position is that each company and individual are responsible for their own due
diligence and continuous security. CertiK’s goal is to help reduce the attack vectors and the
high level of variance associated with utilizing new and consistently changing technologies,
and in no way claims any guarantee of security or functionality of the technology we agree
to analyze.

19

About CertiK
Founded in 2017 by leading academics in the field of Computer Science from both Yale and
Columbia University, CertiK is a leading blockchain security company that serves to verify
the security and correctness of smart contracts and blockchain-based protocols. Through
the utilization of our world-class technical expertise, alongside our proprietary, innovative
tech, we’re able to support the success of our clients with best-in-class security, all whilst
realizing our overarching vision; provable trust for all throughout all facets of blockchain.

20

