
WASABIX FINANCE SMART
CONTRACT, CODE REVIEW
AND SECURITY ANALYSIS

REPORT

Customer​: Wasabix Finance
Prepared on​: 14 May 2021
Platform: Binance Smart Chain
Language: Solidity

1

TABLE OF CONTENTS

Document 4

Introduction 5

Project Scope 6

Executive Summary 7

Code Quality 8

Documentation 9

Use of Dependencies 10

AS-IS Overview 10

Severity Definitions 15

Audit Findings 16

Conclusion 17

Our Methodology 18

Disclaimers 20

info@rdauditors.com Page 2

THIS DOCUMENT MAY CONTAIN CONFIDENTIAL INFORMATION

ABOUT ITS SYSTEMS AND INTELLECTUAL PROPERTY OF THE

CUSTOMER AS WELL AS INFORMATION ABOUT POTENTIAL

VULNERABILITIES AND METHODS OF THEIR EXPLOITATION.

THE REPORT CONTAINING CONFIDENTIAL INFORMATION CAN

BE USED INTERNALLY BY THE CUSTOMER OR IT CAN BE

DISCLOSED PUBLICLY AFTER ALL VULNERABILITIES ARE

FIXED - UPON DECISION OF CUSTOMER.

info@rdauditors.com Page 3

Document

Name Smart Contract Code
Review and Security
Analysis Report of Wasabix
Finance

Platform BSC / Solidity

File 1 Alchemist.sol

MD5 hash 85176AE8A98C5849858FF688164
89726

SHA256 hash
597BCA22BB5B74791D8E6B8206
B973A5D640503786904125265A8
4B7DBA3AA24

File 2 CDP.sol

MD5 hash DE5B55F86BFBD467C93FCE153
0BE08D5

SHA256 hash
3BD5E5A1A512508A648FBC9BA
A576E445DB1C1CE5F513DFCA4
3FC0C96B5CA402

File 3 CDPD8.sol

MD5 hash 16B108B0433F1CD8BFC9A65788
1BAC9A

SHA256 hash
E2BDF8CF97C6731EB6F95F377E
68BA3D648BF36FD8116BDC29F9
44EA43649B7A

File 4 Vault.sol

MD5 hash 26EFBC8FBE3DB930D9DDB41A1
831A141

SHA256 hash
499FB32BBF7F419269AD132E52
19BC980E5FF4E85A641F6325D1
67BEC406233F

File 5 Vault V2.sol

MD5 hash BC716DF46A98AB4E5771ADB121
89A1DD

SHA256 hash
E6EFF9AE376E9E0EE956ABA419
61D5F6296A1BDE2A60ACDB397
7EF476CA16ADC

Date 14/05/2021

info@rdauditors.com Page 4

Introduction

RD Auditors (Consultant) was contracted by Wasabix Finance (Customer)
to conduct a Smart Contracts Code Review and Security Analysis. This
report represents the findings of the security assessment of the
customer`s smart contracts and its code review conducted between 11 -
14 May 2021.

This contract consists of five files.

info@rdauditors.com Page 5

Project Scope

The scope of the project is a smart contract.

We have scanned this smart contract for commonly known and more
specific vulnerabilities, below are those considered (the full list includes
but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page 6

Executive Summary

According to the assessment, the customer’s solidity smart contract is well
secured.

You are here

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, manual audit found during automated analysis were manually

reviewed and applicable vulnerabilities are presented in the audit overview

section. The general overview is presented in the AS-IS section and all

issues found are located in the audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 0 very low level issues.

info@rdauditors.com Page 7

Code Quality

Please find a link that, within this report, contains SafeMath, Math and

safeERC20 from the popular open source.

The libraries within this smart contract are part of a logical algorithm. A

library is a different type of smart contract that contains reusable code.

Once deployed on the blockchain (only once), it is assigned to a specific

address and its properties/methods can be reused many times by other

contracts.

Wasabi Finance has not provided scenario and unit test scripts, which

would help to determine the integrity of the code in an automated way.

Overall, the code is well commented. Commenting provides rich

documentation for functions, return variables and more and also helps

auditors to quick cover the flow behind code logic. Use of Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page 8

Documentation

We were given the contracts as a github link:

https://github.com/wasabi-swap-team/wasabix-yum/tree/main/contracts/libr

aries/alchemist

https://github.com/wasabi-swap-team/wasabix-yum/blob/main/contracts/Al

chemist.sol

The hash of that file is mentioned in the table. As mentioned, it's well

commented code so anyone can quickly understand the programming flow

as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol. It also provides a

clear overview of the system components, including helpful details, like the

lifetime of the background script.

info@rdauditors.com Page 9

https://github.com/wasabi-swap-team/wasabix-yum/tree/main/contracts/libraries/alchemist
https://github.com/wasabi-swap-team/wasabix-yum/tree/main/contracts/libraries/alchemist
https://github.com/wasabi-swap-team/wasabix-yum/blob/main/contracts/Alchemist.sol
https://github.com/wasabi-swap-team/wasabix-yum/blob/main/contracts/Alchemist.sol

Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

AS-IS Overview

Wasabix Finance

The cross chain yield-backed synthetic asset and AMM DEX platform.

info@rdauditors.com Page 10

File And Function Level Report

File: Alchemist.sol

Contract: Alchemist
Import: math, reentrancyguard, Address, FixedPointMath,

ITransmuter, IMintable, ERC20, IChainlink,
IVaultAdapter, vault, console

Inherit: ReentrancyGuard
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

Sl. Function Type Observation Test Report Conclusion Score
1 SetPendingGovernance write Passed All Passed No Issue Passed
2 acceptGovernance write Passed All Passed No Issue Passed
3 setSentinel write Passed All Passed No Issue Passed
4 setTransmuter write Passed All Passed No Issue Passed
5 setFlushActivator write Passed All Passed No Issue Passed
6 SetRewards write Passed All Passed No Issue Passed
7 setHarvestFee write Passed All Passed No Issue Passed
8 setCollateralizationlimit write Passed All Passed No Issue Passed
9 setOracleAddress write Passed All Passed No Issue Passed

10 setEmergencyExit write Passed All Passed No Issue Passed
11 collateralizationLimit read Passed All Passed No Issue Passed
12 Initialize write Passed All Passed No Issue Passed
13 migrate write Passed All Passed No Issue Passed
14 harvest write Passed All Passed No Issue Passed
15 recall write Passed All Passed No Issue Passed
16 recallAll write Passed All Passed No Issue Passed
17 FlushActiveVault write Passed All Passed No Issue Passed
18 deposit write Passed All Passed No Issue Passed
19 withdraw write Passed All Passed No Issue Passed
20 repay write Passed All Passed No Issue Passed

info@rdauditors.com Page 11

21 liquidate write Passed All Passed No Issue Passed
22 mint write Passed All Passed No Issue Passed
23 vaultCount read Passed All Passed No Issue Passed
24 getVaultAdapter read Passed All Passed No Issue Passed
25 getVaultTotalDeposited read Passed All Passed No Issue Passed
26 getCdpTotalDeposited read Passed All Passed No Issue Passed
27 getcdpTotalDept read Passed All Passed No Issue Passed
28 getcdpLastDeposit read Passed All Passed No Issue Passed
29 _distributeToTransmuter write Passed All Passed No Issue Passed
30 _expectCaller write Passed All Passed No Issue Passed
31 _UpdateActiveVault write Passed All Passed No Issue Passed
32 _recallFunds write Passed All Passed No Issue Passed
33 _withdrawFundsTo write Passed All Passed No Issue Passed

File: CDP.sol

Contract: CDP
Import: Math, safeERC20, safeMath, FixedPointMath,

IDetailedERC20, console
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

Sl. Function Type Observation Test Report Conclusion Score
1 Update write Passed All Passed No Issue Passed
2 checkHealth read Passed All Passed No Issue Passed
3 isHealthy read Passed All Passed No Issue Passed
4 getUpdatedTotalDebt read Passed All Passed No Issue Passed
5 getUpdatedTotalCredit read Passed All Passed No Issue Passed
6 getEarnedYield read Passed All Passed No Issue Passed
7 getCollateralizationRatio read Passed All Passed No Issue Passed

info@rdauditors.com Page 12

File: CDPD8.sol

Contract: CDPD8
Import: Math, safeERC20, safeMath, FixedPointMathD8,

IDetailedERC20, hardhat
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

Sl. Function Type Observation Test Report Conclusion Score
1 Update write Passed All Passed No Issue Passed
2 checkHealth read Passed All Passed No Issue Passed
3 isHealthy read Passed All Passed No Issue Passed
4 getUpdatedTotalDebt read Passed All Passed No Issue Passed
5 getUpdatedTotalCredit read Passed All Passed No Issue Passed
6 getEarnedYield read Passed All Passed No Issue Passed
7 getCollateralizationRatio read Passed All Passed No Issue Passed

File: Vault.sol

Contract: Vault
Import: Math, safeERC20, safeMath, IVaultAdapter

IDetailedERC20
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

info@rdauditors.com Page 13

Sl. Function Type Observation Test Report Conclusion Score
1 totalValue read Passed All Passed No Issue Passed
2 token read Passed All Passed No Issue Passed
3 deposit read Passed All Passed No Issue Passed
4 depositAll write Passed All Passed No Issue Passed
5 withdraw write Passed All Passed No Issue Passed
6 directWithdraw write Passed All Passed No Issue Passed
7 withdrawAll write Passed All Passed No Issue Passed
8 harvest write Passed All Passed No Issue Passed
9 push write Passed All Passed No Issue Passed

10 get read Passed All Passed No Issue Passed
11 last read Passed All Passed No Issue Passed
12 lastIndex read Passed All Passed No Issue Passed
13 length read Passed All Passed No Issue Passed

File: VaultV2.sol

Contract: VaultV2
Import: Math, safeERC20, safeMath, IvaultAdapterV2

IDetailedERC20, console
Observation: Passed
Test Report: Passed
Score: Passed
Conclusion: Passed

Sl. Function Type Observation Test Report Conclusion Score
1 totalValue read Passed All Passed No Issue Passed
2 token read Passed All Passed No Issue Passed
3 deposit write Passed All Passed No Issue Passed
4 depositAll write Passed All Passed No Issue Passed
5 withdraw write Passed All Passed No Issue Passed
6 directWithdraw write Passed All Passed No Issue Passed

info@rdauditors.com Page 14

7 withdrawAll write Passed All Passed No Issue Passed
8 harvest write Passed All Passed No Issue Passed
9 push write Passed All Passed No Issue Passed

10 get read Passed All Passed No Issue Passed
11 last read Passed All Passed No Issue Passed
12 lastIndex read Passed All Passed No Issue Passed
13 length read Passed All Passed No Issue Passed

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they
also have a significant impact on smart contract execution,
e.g. public access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however,
they cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated,
unused etc. These code snippets cannot have a significant
impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and
information statements cannot affect smart contract
execution and can be ignored.

info@rdauditors.com Page 15

Audit Findings

Critical

No high severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low

No very Low severity vulnerabilities were found.

info@rdauditors.com Page 16

Conclusion

We were given a contract file and have used all possible tests based on

the given object. The contract is written systematically, so it is ready to go

for production.

Since possible test cases can be unlimited and developer level

documentation (code flow diagram with function level description) not

provided, for such an extensive smart contract protocol, we provide no

such guarantee of future outcomes. We have used all the latest static tools

and manual observations to cover maximum possible test cases to scan

everything.

The given repository link contains 57 solidity files and many external

reference for library, interfaces and others and we are asked to audit only

5 files of them, which are centered around "Alchemist.sol" hence all our

observations/findings are limited to these files only, we did not checked

any connected impact with other files hence we are not sure as a whole

the entire project is secured or not .

The security state of the reviewed contract is “well secured”

info@rdauditors.com Page 17

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the

quality of systems we review and aim for sufficient remediation to help

protect users. The following is the methodology we use in our security

audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues

with code logic, error handling, protocol and header parsing,

cryptographic errors, and random number generators. We also watch for

areas where more defensive programming could reduce the risk of future

mistakes and speed up future audits. Although our primary focus is on

the in-scope code, we examine dependency code and behavior when it

is relevant to a particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's

web site to get a high level understanding of what functionality the

software under review provides. We then meet with the developers to

gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we

do this, we brainstorm threat models and attack surfaces. We read

design documentation, review other audit results, search for similar

projects, examine source code dependencies, skim open issue tickets,

and generally investigate details other than the implementation.

info@rdauditors.com Page 18

Documenting Results:
We follow a conservative, transparent process for analyzing potential

security vulnerabilities and seeing them through successful remediation.

Whenever a potential issue is discovered, we immediately create an

Issue entry for it in this document, even though we have not yet verified

the feasibility and impact of the issue. This process is conservative

because we document our suspicions early even if they are later shown

to not represent exploitable vulnerabilities. We generally follow a process

of first documenting the suspicion with unresolved questions, then

confirming the issue through code analysis, live experimentation, or

automated tests. Code analysis is the most tentative, and we strive to

provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyse the feasibility of an attack in a live

system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for

future releases. The mitigation and remediation recommendations

should be scrutinised by the developers and deployment engineers, and

successful mitigation and remediation is an ongoing collaborative

process after we deliver our report, and before the details are made

public.

info@rdauditors.com Page 19

Disclaimers
RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance
with the best industry practices at the date of this report, in relation to:
cybersecurity vulnerabilities and issues in smart contract source code,
the details of which are disclosed in this report, (Source Code); the
Source Code compilation, deployment and functionality (performing the
intended functions).

Because the total number of test cases are unlimited, the audit makes
no statements or warranties on the security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of
the code, bugfree status or any other statements of the contract. While
we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a public
bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The
platform, its programming language, and other software related to the
smart contract can have their own vulnerabilities that can lead to hacks.
Thus, the audit can’t guarantee explicit security of the audited smart
contracts.

info@rdauditors.com Page 20

Email: info@rdauditors.com

Website: www.rdauditors.com

